Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations.
نویسندگان
چکیده
Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.
منابع مشابه
Charge-dependent model for many-body polarization, exchange, and dispersion interactions in hybrid quantum mechanical/molecular mechanical calculations.
This work explores a new charge-dependent energy model consisting of van der Waals and polarization interactions between the quantum mechanical (QM) and molecular mechanical (MM) regions in a combined QMMM calculation. van der Waals interactions are commonly treated using empirical Lennard-Jones potentials, whose parameters are often chosen based on the QM atom type (e.g., based on hybridizatio...
متن کاملAn Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations.
A method is presented for the efficient evaluation of long-range electrostatic forces in combined quantum mechanical and molecular mechanical (QM/MM) calculations of periodic systems. The QM/MM-Ewald method is a linear-scaling electrostatic method that utilizes the particle mesh Ewald algorithm for calculation of point charge interactions of molecular mechanical atoms and a real-space multipola...
متن کاملCombined QM/MM study of the opsin shift in bacteriorhodopsin
Combined quantum mechanical and molecular mechanical (QM/MM) calculations and molecular dynamics simulations of bacteriorhodopsin (bR) in the membrane matrix have been carried out to determine the factors that make significant contributions to the opsin shift. We found that both solvation and interactions with the protein significantly shifts the absorption maximum of the retinal protonated Sch...
متن کاملPolarization and charge-transfer effects in aqueous solution via ab initio QM/MM simulations.
Combined ab initio quantum mechanical and molecular mechanical (QM/MM) simulations coupled with the block-localized wave function energy decomposition (BLW-ED) method have been conducted to study the solvation of two prototypical ionic systems, acetate and methylammonium ions in aqueous solution. Calculations reveal that the electronic polarization between the targeted solutes and water is the ...
متن کاملReliable treatment of electrostatics in combined QM/MM simulation of macromolecules.
A robust approach for dealing with electrostatic interactions for spherical boundary conditions has been implemented in the QM/MM framework. The development was based on the generalized solvent boundary potential (GSBP) method proposed by Im et al. [J. Chem. Phys. 114, 2924 (2001)], and the specific implementation was applied to the self-consistent-charge density-functional tight-binding approa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 143 23 شماره
صفحات -
تاریخ انتشار 2015